Maturation-dependent response of the piglet brain to scaled cortical impact.
نویسندگان
چکیده
OBJECT The goal of this study was to investigate the relationship between maturational stage and the brain's response to mechanical trauma in a gyrencephalic model of focal brain injury. Age-dependent differences in injury response might explain certain unique clinical syndromes seen in infants and young children and would determine whether specific therapies might be particularly effective or even counterproductive at different ages. METHODS To deliver proportionally identical injury inputs to animals of different ages, the authors have developed a piglet model of focal contusion injury by using specific volumes of rapid cortical displacement that are precisely scaled to changes in size and dimensions of the growing brain. Using this model, the histological response to a scaled focal cortical impact was compared at 7 days after injury in piglets that were 5 days, 1 month, and 4 months of age at the time of trauma. Despite comparable injury inputs and stable physiological parameters, the percentage of hemisphere injured differed significantly among ages, with the youngest animals sustaining the smallest lesions (0.8%, 8.4%, and 21.5%, for 5-day-, 1-month-, and 4-month-old animals, respectively, p = 0.0018). CONCLUSIONS These results demonstrate that, for this particular focal injury type and severity, vulnerability to mechanical trauma increases progressively during maturation. Because of its developmental and morphological similarity to the human brain, the piglet brain provides distinct advantages in modeling age-specific responses to mechanical trauma. Differences in pathways leading to cell death or repair may be relevant to designing therapies appropriate for patients of different ages.
منابع مشابه
O-8: Molecular Mechanisms of Membrane Fusion Involved in Fertilization
Background: Assisted fertilization procedures are a currently widespread practice to regulate reproduction in humans and animals. The arising question is why the human being manipulating gametes to generate new individuals, if we do not understand yet the molecular mechanism of fertilization?. Successful completion of fertilization in mammals is dependent on three membrane fusion events: 1. the...
متن کاملEffect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملP-52: Brain-Derived Neurotrophic Factor Promotes The Development of Human Ovarian Early Follicles during Growth In Vitro
Background Cryopreservation of ovarian cortex is increasingly used to preserve fertility before cancer therapy. Recently, studies show that Brain-derived neurotrophic factor (BDNF) may be involved in oocyte maturation. Brain-derived neurotrophic factor (BDNF) is member of neurotrophin family that has anti-apoptotic effects on nervous system. Recent researches show that it also plays key role in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurosurgery
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2000